Microsoft Research Surpasses Human-Level Performance On ImageNet Classification Dataset

Microsoft Research

Microsoft Research has recently published an academic paper titled “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. In this paper, they are proposing a new rectifier model that surpasses human-level performance on visual recognition challenge.

Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on our PReLU networks (PReLU-nets), we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66%). To our knowledge, our result is the first to surpass human-level performance (5.1%, Russakovsky et al.) on this visual recognition challenge.

Download the full paper from the link below.

Source: Cornell University

Some links in the article may not be viewable as you are using an AdBlocker. Please add us to your whitelist to enable the website to function properly.

Related
Comments